Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Asian Biomed (Res Rev News) ; 17(4): 185-199, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37860678

RESUMO

Background: STAT3, a pleiotropic transcription factor, plays a critical role in the pathogenesis of autoimmunity, cancer, and many aspects of the immune system, as well as having a link with inflammatory bowel disease. Changes caused by non-synonymous single nucleotide polymorphisms (nsSNPs) have the potential to damage the protein's structure and function. Objective: We identified disease susceptible single nucleotide polymorphisms (SNPs) in STAT3 and predicted structural changes associated with mutants that disrupt normal protein-protein interactions using different computational algorithms. Methods: Several in silico tools, such as SIFT, PolyPhen v2, PROVEAN, PhD-SNP, and SNPs&GO, were used to determine nsSNPs of the STAT3. Further, the potentially deleterious SNPs were evaluated using I-Mutant, ConSurf, and other computational tools like DynaMut for structural prediction. Result: 417 nsSNPs of STAT3 were identified, 6 of which are considered deleterious by in silico SNP prediction algorithms. Amino acid changes in V507F, R335W, E415K, K591M, F561Y, and Q32K were identified as the most deleterious nsSNPs based on the conservation profile, structural conformation, relative solvent accessibility, secondary structure prediction, and protein-protein interaction tools. Conclusion: The in silico prediction analysis could be beneficial as a diagnostic tool for both genetic counseling and mutation confirmation. The 6 deleterious nsSNPs of STAT3 may serve as potential targets for different proteomic studies, large population-based studies, diagnoses, and therapeutic interventions.

2.
J Genet Eng Biotechnol ; 21(1): 95, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801178

RESUMO

BACKGROUND: Tuftelin 1 (TUFT1) gene is important in the development and mineralization of dental enamel. The study aimed to identify potential functionally deleterious non-synonymous SNPs (nsSNPs) in the TUFT1 gene by using different in silico tools. The deleterious missense SNPs were identified from SIFT, PolyPhen-2, PROVEAN, SNPs & GO, PANTHER, and SNAP2. The stabilization, conservation, and three-dimensional modeling of mutant proteins were analyzed by I-Mutant 3.0, Consurf, and Project HOPE, respectively. The protein-protein interaction using STRING, GeneMANIA for gene-gene interaction, and DynaMut for evaluating the impact of the mutation on protein stability, conformation, and flexibility. RESULTS: Eight deleterious nsSNPs (E242A, R303W, K182N, K123N, R117W, H289Q, R203W, and Q107R) out of 304 were found to have high-risk damaging effects using six in silico tools. Among them, K182N and K123N alone had increased stability, whereas E242A, R303W, R117W, H289Q, Q107R, and R203W exhibited a decrease in protein stability, based on DDG values. Meanwhile, all the eight deleterious nsSNPs altered the size, charge, hydrophobicity, and spatial organization of the amino acids and predominantly had alpha helix domains. These deleterious variants were located in highly conserved regions except R203W. Protein-protein interaction predicted that TUFT1 interacted with ten proteins that are involved in enamel mineralization and odontogenesis. Gene-gene interaction network showed that TUFT1 is involved in physical interactions, gene co-localization, and pathway interactions. DynaMut ΔΔG values predicted that five nsSNPs were destabilizing the protein, ΔΔG ENCoM values showed a destabilizing effect for all mutants, and seven nsSNPs increased the molecular flexibility of TUFT1. CONCLUSION: Our study predicted eight functional SNPs that had detrimental effects on the structure and function of the TUFT1 gene. This will aid in the development of candidate deleterious markers as a potential target for disease diagnosis and therapeutic interventions.

3.
J Biomol Struct Dyn ; 41(23): 13663-13678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995112

RESUMO

Orthosiphon stamineus Benth a traditional medicine used in the treatment of diabetes and kidney diseases. Sodium-glucose co-transporter (SGLT1 and SGLT2) inhibitors are the novel group of drugs used to treat patients with type 2 diabetes mellitus. In this study 20 phytochemical compounds from Orthosiphon stamineus Benth were obtained from 3 databases viz Dr.Duke's phytochemical, Ethno botanical database and IMPPAT. They were subjected to physiochemical, drug likeliness, and ADMET and toxicity predictions. Homology modeling and molecular docking against SGLT1 and SGLT2 were performed and the stability of the selected drug molecule was validated by molecular dynamic (MD) simulation for 200 ns. Among the 20 compounds, 14-Dexo-14-O-acetylorthosiphol Y alone showed higher binding affinity with SGLT1 and SGLT2 protein with the binding energy of -9.6 and -11.4 Kcal/mol respectively and had highest affinity towards SGLT2 inhibitor. This compound also satisfied Lipinski rule of 5 and had a good ADMET profile. The compound is non-toxic to marine organisms and to normal cell lines and non-mutagenic. The RMSD value attained equilibrium at 150 ns with the stability around 4.8 Å and no significant deviation was reported from 160 to 200 ns for SGLT2. Our study suggests that 14-Dexo-14-O-acetylorthosiphol Y showed promising results against the SGLT2 and could be considered as a potent anti-diabetic drug.Communicated by Ramaswamy H. Sarma.


Assuntos
Diabetes Mellitus Tipo 2 , Orthosiphon , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Simulação de Acoplamento Molecular , Transportador 2 de Glucose-Sódio/química , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/uso terapêutico , Orthosiphon/química , Orthosiphon/metabolismo , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/uso terapêutico
4.
Cell Death Dis ; 9(8): 825, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068946

RESUMO

The histone modifiers (HMs) are crucial for chromatin dynamics and gene expression; however, their dysregulated expression has been observed in various abnormalities including cancer. In this study, we have analyzed the expression of HMs in microarray profiles of head and neck cancer (HNC), wherein a highly significant overexpression of p21-activated kinase 2 (PAK2) was identified which was further validated in HNC patients. The elevated expression of PAK2 positively correlated with enhanced cell proliferation, aerobic glycolysis and chemoresistance and was associated with the poor clinical outcome of HNC patients. Further, dissection of molecular mechanism revealed an association of PAK2 with c-Myc and c-Myc-dependent PKM2 overexpression, wherein we showed that PAK2 upregulates c-Myc expression and c-Myc thereby binds to PKM promoter and induces PKM2 expression. We observed that PAK2-c-Myc-PKM2 axis is critical for oncogenic cellular proliferation. Depletion of PAK2 disturbs the axis and leads to downregulation of c-Myc and thereby PKM2 expression, which resulted in reduced aerobic glycolysis, proliferation and chemotherapeutic resistance of HNC cells. Moreover, the c-Myc complementation rescued PAK2 depletion effects and restored aerobic glycolysis, proliferation, migration and invasion in PAK2-depleted cells. The global transcriptome analysis of PAK2-depleted HNC cells revealed the downregulation of various genes involved in active cell proliferation, which indicates that PAK2 overexpression is critical for HNC progression. Together, these results suggest that the axis of PAK2-c-Myc-PKM2 is critical for HNC progression and could be a therapeutic target to reduce the cell proliferation and acquired chemoresistance and might enhance the efficacy of standard chemotherapy which will help in better management of HNC patients.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Hormônios Tireóideos/metabolismo , Quinases Ativadas por p21/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Glicólise , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , beta Catenina/metabolismo , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/genética , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...